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The ' excited states of the H, molecule are computed following a recent study by Corongiu and Clementi
(J. Chem. Phys. 2009, 131, 034301) on the 'X] states. Full configuration interaction computations both from
Hartree—Fock molecular orbitals and Heitler—London atomic orbitals are presented and correlated with a
comprehensive analysis. The basis sets utilized are either extended and optimized Slater type functions, STO,
or spherical Gaussian functions, GTO. Computations and analyses are presented for states 1 to 14, covering
the internuclear distances from 0.01 to 10000 bohr. The accurate data by L. Wolniewicz and collaborators,
available for the first six excited states, verify the good quality of our computations. We focus on the
characterization of the orbitals in the excited state wave functions, on the electronic density evolution from
the united atom to dissociation, on quantitative decomposition of the total energy into covalent and ionic
components and on detailed analyses of energy contributions to the total state energy from selected STO
subsets. Each manifold has one state, specifically the states 1, 3 and 6, where the second minimum has strong
ionic character. State 10 dissociates into the ion pair HTH™.

1. Introduction

This work reports computations of the 'Z excited states 1
to 14 for the H, molecule, following a computational approach
recently proposed' for a study on the 'Z; excited states. Energies
of the united atom and dissociation products, discussions on
the choice of the basis sets, details on the techniques used to
analyze the obtained wave functions and energies when in
common both to this work and to ref 1 are here only
summarized.

The 'S excited states have been often studied.>”® The most
accurate potential energy curves, PECs, for the first six states
are those by Staszewska and Wolniewicz.® Accurate computa-
tions for the first 9 states, using generalized Gaussian functions,
have been published by Cederbaum et al.,” where, however, the
PECs for the states are mainly reported only graphically.

In Figure 1 the state orbital diagram for the '=; excited state
manifolds reports the electronic states for the united atom (He),
the dissociation products for the H, molecule up to n = 4, i.e.
H(1s) + H(4l), the lowest state energy for the H,™ molecular
ion and the lowest state energy for the H"H™ system.! At the
left side of Figure 1 we report the excited state energies for
helium (the united atom), the corresponding designations (1 to
9) of the molecular excited states and state connections from
the united atom to the H, atomic dissociation products, namely
the two atoms H(1s) and H(xn/), indicated in the figure with the
short notation n = 2, 3, and 4. The [ value varies from 0 to 3
(i.e., from s to f orbitals) corresponding to the excited states
1B to 9B, namely up to n = 4. Note that the last helium state
(1s7p) is not connected to the right site of the diagram, since
the dissociation products for n = 5 are not reported. The
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Figure 1. State diagram for the 'S excited states 1 to 9 of the H,
molecule.

computations include also states with dissociation n = 5, not
indicated in Figure 1.

In the following of this work we use both the full state
notation nB with n = 1,..., 9, or simply the shorthand
designation 1, ..., 9, as done in the figure, to denote different
I3 states. Computationally, these high states require very
extended basis sets capable of describing from He(1s2p) up to
He(1s'9p") and He(1s'9f!) at the united atom and from H(Is)
up to H(51), with [ up to 4, at dissociation; for this reason states
10B to 14B are considered rather briefly and the corresponding
computations are somewhat less reliable, being obtained with
nonoptimal basis sets.

2. The 'T} Excited States

The computations of the PECs start at the united atom and
end at the internuclear distance of 10* bohr. Two extended basis
sets are used in this study: one constructed with exponential
functions of Slater type, STO, the second with spherical
Gaussian functions, GTO. These optimized basis sets are nearly
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Figure 2. PECs for the 'S excited states of the H, molecule.

equivalent, and the computations obtained with the two types
of functions yield slightly different eigenvalues (and corre-
sponding slightly different electronic densities) for a given
internuclear separation. The use of two different functions, STO
and GTO, provides a useful numerical check and adds flexibility
to the interpretation of the computations, as discussed in ref 1.

The STO basis set is made of two 1s, three 2s, two 3s, one
4s, one 5Ss, four 2p, two 3p, one 4p, one 5p, four 3d, one 4d,
one 5d, three 4f, and two 5f functions. The GTO basis set is
made of 17s,10p,11d, 7f contracted to 12s, 10p, 8d and 5f. At
the united atom the helium basis set is formed by three 1s, three
2s, two 3s, two 4s, one 5s, two 6s, four 2p, two 3p, two 4p,
two 5p, one 6p, four 3d, one 4d, two 5d, one 6d, four 4f, three
5f and one 6f functions. With this basis set we well represent
the energies of the helium singly excited states with configu-
ration up to (1s6f). The dissociation products are well repre-
sented by the STO basis set, which accurately reproduces
hydrogenic functions: in this study the hydrogenic functions
have nl values ranging fromn =1ton =5and [ =0to [ =
3; additional details on the hydrogenic functions for H, are given
in ref 1.

In Figure 2 the computed PECs for the 'S excited states 1B
to 14B are reported. The internuclear separations considered in
the computations are 130, precisely 25 from 0.01 to 1.0 bohr,
105 from 1.0 to 100 bohr; computations at 1000 and 10000
bohr are performed to define the dissociation products. In the
top panel the PECs of the first 7 states are reported. In this
figure the small circles represent a selected sample of energies
from Wolniewicz data.” In the bottom panel the PECs for
states 7 to 14 and for H," are reported. The PECs for the states
dissociating into H(1s) + H(4/) are computed more accurately
than those for the states dissociating into H(ls) + H(5/),
therefore the latter are considered mainly to complete the '=;
state survey.

Note for state 3B the avoided crossing with state 4B at about
5.7 bohr, and its second deep minimum at ~11 bohr. State 6B
has a shallow second minimum leading to the 1s + 4/
dissociation limit after 100 bohr. State 7B shows a flexion point
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around 5.6 bohr. States 8B and 9B are nearly degenerate from
about 3.5 to 4.5 bohr and show an avoided crossing at ~6.1
bohr. State 10B is very close in energy to the H,™ ground state
(dashed line with circles) and from ~10 bohr starts a slow
energy decrease leading to the H'H™ dissociation limit. States
11B to 14B lie well above the PEC of H," (reported mainly to
complete the 'S state manifold).

The accuracy of the computed energies relative to those of
Wolniewcz is evident from Figure 2. Numerically, the average
deviations (in hartree) are 1.3 x 10™* (with maximum deviation
of 2.3 x 107*at 4.1 bohr), 2.0 x 10~ (with maximum deviation
of 5.6 x 107> at 1.8 bohr), 7.2 x 107> (with maximum devia-
tion of 1.9 x 107* at 14 bohr), 2.3 x 107> (with maximum
deviation of 1.1 x 107* at 5.5 bohr), 2.9 x 107> (with maximum
deviation of 4.0 x 107* at 1.1 bohr), 9.6 x 1073 (with maxi-
mum deviation of 2.0 x 10™* at 1.8 bohr), for states 1 to 6,
respectively. In the first three columns of Table 1 we compare
for each state the computed energy near the minimum positions
with the data from ref 9. In the fourth and fifth columns of
Table 1 we report the computed equilibrium distance and the
corresponding energy. In the last two columns we report the
laboratory data.!® For states 7B to 12B at 2.0 bohr and for states
13B and 14B at 2.1 bohr the energies (in hartree) are —0.61741,
—0.61493,—0.61077,—0.60249, —0.59530, —0.58116, —0.56447,
and —0.54754, respectively. The finding that the minimum of
states 11 to 14 is above the H,™ ion energy might be due to the
basis set difficulty to well represent these high states. Addition
of one 5g function improves the energy of the last four states
to —0.59684, —0.59579, —0.57962, and —0.56390. With the
same basis set we obtain for the 10, and 1o, states of the H,"
ion, at 2.0 bohr, the energies of —0.602633 and —0.167533
hartree, respectively; both values differ by 1.5 x 107 hartree
from the best results of ref 11.

For very short internuclear distances we report the computed
results in Figure 3. The PECs of this figure correspond to
electronic rather than total energies, for graphical reasons. The
PEC:s of the top panel accurately merge into the expected helium
excited state energies, as shown in the figure. From R = 0.01
to 0.1 bohr the PECs are obtained from computations with the
helium STO basis set centered midway the two hydrogen nuclei.
From 0.1 to 0.9 bohr, the PECs are more accurately obtained
with the GTO basis set centered on the hydrogen nuclei.

In literature the PECs at short distances are often ap-
proximated with linear interpolation from the helium atomic
energies with those computed at distances near 1.0 bohr. The
data from Figure 3 indicate that the linear interpolation is
reasonable until about 0.3 bohr; at shorter distances deviations
from linearity are noted.

For the first 10 states (with energy at the minimum below
the H," ion energy) a tabulation of the computed energies at
selected internuclear distances is provided in Table 2; from R
= 0 to R = 0.6 bohr we have reported the electronic energy,
thereafter the total energy.

3. Decomposition into Ionic and Covalent Components

The full-CI of HL orbitals facilitates the decomposition of
the total state energies into ionic and covalent components.!
In the top panel of Figure 4 we report for states 1B to 7B both
the total energy and the corresponding covalent component. The
covalent component for states 1B, from ~2.2 bohr until
dissociation, and for states 3B, and 6B, in the region of their
second minimum, is clearly in need of the ionic component.

The state energies for the system H"H™ are reported (bullets)
in the bottom panel of Figure 4. The states are very near in
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TABLE 1: Comparison of Total Energies, E (hartree), near the Minimum Positions, R (bohr), from Wolniewicz Data® and
from this Work; Computed Equilibrium Distance, R.q (bohr), and Energy, E., (hartree), from this Work*

—E
state R ref 9 this work Req —Eqq R(exp) —E(exp)
1B 2.4 0.756674 0.75652 2.420 0.75653 2.4431 0.756660
2B 2.1 0.665791 0.66576 2.085 0.66577 2.1150 0.665793
3B 2.0 0.636960 0.63695 2.032 0.63698 2.1161 0.636899
3B 11.1 0.605666 0.60551 11.12 0.60551
4B 2.0 0.634102 0.63409 2.000 0.63409
5B 2.0 0.624204 0.62419 2.012 0.62419
6B 2.0 0.622749 0.62271 1.998 0.62272
6B 34.0 0.555504 0.55548 33.80 0.55548

@ The last two columns, R(exp) and E(exp), are laboratory data.'”
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Figure 3. Short distance electronic energies. Top: from the united atom
(R = 0) to 0.3 bohr. Bottom: from 0.3 to 0.9 bohr.

energy to those of H, (solid lines), but slightly at higher energy
from short to intermediate distances. The difference between
the H, and H*H™ energies is notable mainly after the first
minimum toward large internuclear distances, around 4—5 bohr,
where the HTH™ states are experimentally detected.'? In this
panel we report also the HYH™ curve computed with the analytic
expression of ref 7, this curve (dashed line) overlaps that of the
H*H™ ground state and that of state 6B from 12 bohr until
dissociation, for shorter internuclear distances it is much less
attractive. Indeed, from 10 to 12 bohr it overlaps with the curve
of state 2B, whereas we find that it is the second excited state
of H"H™ which overlaps state 2B.

As demonstrated by Slater,'* for the H, molecule the HL
covalent and ionic functions, though orthogonal at infinity, are
highly nonorthogonal at equilibrium and at shorter distances,
actually the shorter the internuclear distance the more the two
functions resemble one another. This is not surprising since the
two functions must become identical at the united atom. Further,
as pointed out by Mulliken,'* although the excited ionic states
are only virtual states for internuclear distances approaching
infinity, at small and intermediate distances the stabilization
induced by H" on the excited H™ should convert the virtual
states into real states. Indeed, from Figure 4 it is evident that
for large internuclear distances the PECs of the excited HTH™
states are above the dissociation limit, and therefore unstable.

Following the H, study of ref 1, we define the quantity # as
the ratio between the covalent energy component and the total

energy, 7 = E(covalent)/E(total). This leads to the definition
of the ionic energy percent, IEP = 100(1 — #) also introduced
in ref 1. Figure 5 reports the IEP for the 'Z; states, in the top
panel for the states 1B, 3B and 6B and in the bottom panel for
states 2B, 4B, and 5B. Note that for the latter three states the
IEP is very small and localized, with sharp variations due to
state interactions and state crossing. In addition, whereas for
states 3B and 6B the maximum of IEP occurs at the second
minimum position, for state 1B we see an almost constant
contribution from 5 to 8 bohr. The second minimum of state
3B has been experimentally observed,'>'> whereas that of state
6B has only been found from computations.”’ However,
unresolved HTH™ states above the n = 4 threshold were shown
to exist by wave-packets experiments.!¢

For the 'Zf states it has been found' that for each state
manifold dissociating as (1snl) with n > 1 there is one state
which interacts with the HYH™ system leading to minima at
larger and larger internuclear separations the higher the value
of n. Indeed, a strong ionic character for states EF, H, 7, and
11 was observed. This finding is here extended to the '=; state
manifolds, the states 1B, 3B, 6B and 10B, all with ionic
character, have dissociation limits (1s2p), (1s3d), (1s4d) and
the ion pair HTH™, respectively.

By grouping together states with the same n value in the
dissociation products H(1s) + H(nl), we obtain the four panels
of Figure 6. For each n value we report the H, states of 'X;
symmetry (see ref 1), those of X} symmetry, and those of the
HTH™ system (see ref 1). The panels of the figure are
complicated because of small energy differences between states;
the figure reveals simply by inspection the complexity of these
“simple” molecular systems. To facilitate the reading of the
figure only a few states are explicitly identified; for example
the labels 1g and 1u refer to the first excited state of symmetry
g and u, respectively.

4. Electronic Density Analysis

In this section we analyze for each state its orbital composition
at specified internuclear distances, using an analysis based on
the H, wave functions—obtained with the STO basis sets—equiv-
alent to the atomic radial distribution function, D,(r); the details
of this comparative analysis are available in ref 1.

Since the density in the H, molecule is symmetric upon
reflection in the plane perpendicular to the midpoint of the
molecular axis (z axis), and for any given internuclear distance
the molecular orbitals are linear combinations of STO basis
functions centered at the two nuclear positions, it follows that
the knowledge of the STO linear combination at one nuclear
position characterizes the electronic density also at the other
nuclear position. Further for a given state and for a given
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TABLE 2: Energy Values (hartree) at Internuclear Distances, R (bohr), for States 1 to 10

no. 0.00 0.01 0.02 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

1 —2.12376 —2.12350 —2.12272 —2.05257 —1.92533 —1.79716 —0.43179 —0.58129 —0.66127 —0.70570 —0.73069
2 —2.05512 —2.05485 —2.05408 —1.98377 —1.85610 —1.72716 —0.36064 —0.50861 —0.58663 —0.62867 —0.65084
3 —2.03125 —2.03099 —2.03021 —1.95983 —1.83199 —1.70277 —0.33598 —0.48357 —0.56111 —0.60256 —0.62403
4 —2.03101 —2.03075 —2.02997 —1.95967 —1.83189 —1.70275 —0.33576 —0.48309 —0.56030 —0.60133 —0.62232
5 —2.02000 —2.01974 —2.01896 —1.94855 —1.82070 —1.69149 —0.32460 —0.47205 —0.54942 —0.59066 —0.61187
6 —2.01982 —2.01955 —2.01878 —1.94849 —1.82068 —1.69145 —0.32446 —0.47178 —0.54898 —0.59000 —0.61097
7 —2.01317 —=2.01290 —2.01213 —1.94233 —1.81451 —1.68530 —0.31836 —0.46577 —0.54307 —0.58422 —0.60534
8 —2.00991 —2.00965 —2.00887 —1.94070 —1.81289 —1.68366 —0.31667 —0.46399 —0.54119 —0.58222 —0.60319
9 —1.98096 —1.98069 —1.97991 —1.93465 —1.80683 —1.67764 —0.31078 —0.45829 —0.53573 —0.57705 —0.59834
10 —1.96187 —1.96160 —1.97604 —1.92796 —1.80017 —1.67096 —0.30398 —0.45131 —0.52854 —0.56960 —0.59062
no. 1.70 1.90 2.00 2.10 2.20 2.40 2.80 3.00 3.20 3.60 4.00

1 —0.73867 —0.74888 —0.75196 —0.75408 —0.75544 —0.75652 —0.75456 —0.75234 —0.74957 —0.74291 —0.73526
2 —0.65727 —0.66414 —0.66545 —0.66576 —0.66530 —0.66274 —0.65425 —0.64946 —0.64481 —0.63680 —0.63129
3 —0.63007 —0.63609 —0.63695 —0.63679 —0.63584 —0.63227 —0.62163 —0.61570 —0.60983 —0.59906 —0.59014
4 —0.62810 —0.63354 —0.63409 —0.63362 —0.63235 —0.62812 —0.61605 —0.60935 —0.60263 —0.58987 —0.57869
5 —0.61778 —0.62350 —0.62419 —0.62387 —0.62275 —0.61882 —0.60741 —0.60106 —0.59473 —0.58288 —0.57269
6 —0.61674 —0.62217 —0.62271 —0.62223 —0.62094 —0.61669 —0.60457 —0.59782 —0.59106 —0.57818 —0.56684
7 —0.61119 —0.61678 —0.61741 —0.61701 —0.61582 —0.61174 —0.60000 —0.59345 —0.58691 —0.57457 —0.56381
8 —0.60806 —0.61439 —0.61493 —0.61444 —0.61316 —0.60890 —0.59676 —0.59001 —0.58325 —0.57038 —0.55907
9 —0.60427 —0.61005 —0.61077 —0.61046 —0.60935 —0.60544 —0.59398 —0.58756 —0.58114 —0.56898 —0.55829
10 —0.59642 —0.60191 —0.60249 —0.60204 —0.60079 —0.59663 —0.58473 —0.57812 —0.57151 —0.55911 —0.54933
no. 4.40 4.80 5.20 5.60 5.80 6.40 7.00 7.60 8.00 9.00 10.00

1 —0.72711 —0.71877 —0.71048 —0.70240 —0.69848 —0.68729 —0.67706 —0.66783 —0.66222 —0.65011 —0.64054
2 —0.62826 —0.62692 —0.62644 —0.62630 —0.62628 —0.62621 —0.62610 —0.62596 —0.62586 —0.62565 —0.62548
3 —0.58289 —0.57681 —0.57168 —0.56781 —0.56869 —0.57593 —0.58290 —0.58907 —0.59266 —0.59965 —0.60390
4 —0.56961 —0.56344 —0.56231 —0.56547 —0.56517 —0.56119 —0.55863 —0.55724 —0.55672 —0.55612 —0.55589
5 —0.56422 —0.55734 —0.55240 —0.55023 —0.55025 —0.55177 —0.55321 —0.55420 —0.55465 —0.55529 —0.55552
6 —0.55753  —0.55132  —0.54858 —0.54572 —0.54447 —0.54194 —0.54127 —0.54122 —0.54113 —0.54066 —0.54036
7 —0.55484 —0.54796 —0.54436 —0.54293 —0.54171 —0.53782 —0.53509 —0.53348 —0.53282 —0.53201 —0.53170
8 —0.54995 —0.54416 —0.53965 —0.53541 —0.53358 —0.53097 —0.53187 —0.53173 —0.53158 —0.53145 —0.53141
9 —0.54928 —0.54240 —0.53847 —0.53439 —0.53247 —0.52928 —0.52841 —0.52957 —0.53010 —0.53087 —0.53115
10 —0.54239 —0.53826 —0.53349 —0.52888 —0.52734 —0.52807 —0.52689 —0.52576 —0.52532 —0.52432 —0.52380
no. 11.00 11.10 12.00 13.00 20.00 30.00 34.00 40.00 50.00 100 10000

1 —0.63358 —0.63303 —0.62921 —0.62697 —0.62514 —0.62504 —0.62503 —0.62502 —0.62501 —0.62500 —0.62500
2 —0.62536  —0.62535 —0.62527 —0.62519 —0.62500 —0.62500 —0.62500 —0.62500 —0.62500 —0.62500 —0.62500
3 —0.60549 —0.60551 —0.60461 —0.60187 —0.57827 —0.56109 —0.55711 —0.55556 —0.55555 —0.55555 —0.55555
4 —0.55578 —0.55578 —0.55572 —0.55567 —0.55557 —0.55555 —0.55555 —0.55554 —0.55554 —0.55554 —0.55554
5 —0.55559 —0.55559 —0.55559 —0.55558 —0.55554 —0.55553 —0.55553 —0.55553 —0.55553 —0.55552 —0.55552
6 —0.54048 —0.54053 —0.54118 —0.54244 —0.55281 —0.55542 —0.55548 —0.55261 —0.54758 —0.53756 —0.53122
7 —0.53159 —0.53158 —0.53153 —0.53147 —0.53126 —0.53122 —0.53122 —0.53121 —0.53122 —0.53122 —0.53120
8 —0.53138 —0.53137 —0.53134 —0.53131 —0.53120 —0.53117 —0.53117 —0.53118 —0.53120 —0.53120 —0.53114
9 —0.53124 —0.53124 —0.53124 —0.53123 —0.53117 —0.53104 —0.53104 —0.53111 —0.53115 —0.53114 —0.53056
10 —0.52361 —0.52362 —0.52382 —0.52432 —0.52559 —0.52934 —0.53030 —0.53074 —0.53069 —0.53058 —0.52766

internuclear distance, R, the STO linear combination generally
is characterized by relatively few dominant STO functions.

Recall that the radial distribution function for an atom with
wave function y(r,0,¢) is D, (r) = y*(r)r*.'7 We introduce a
molecular function devised to represent the radial distribution
function of an atom in a molecule. Specifically for H, we
consider the electronic density centered on one of the H atoms,
set at the origin of the coordinate system (the other atom being
at z = —R). For a given state of H, and at a given internuclear
distance, R, we compute 1*(0,0,7)z> for a set of z values, in the
interval O to infinity. In analogy with the atomic computations
of D,(r), we consider the function 1%(0,0,z)z> as a probability
distribution function along the z axis for that H atom in Ho.
The function is characteristic for a given state and for a given
R value, and for H, is designated as Dyye(1s,nl) or simply
“state”(1s,nl). Clearly at R = 0, the D,,(r) for a given helium
state coincides with “state”(1s,nl).

As reported in ref 1, the D,(r)s for H™ are notably different
from those of the H or He atoms and resemble the 1s radial
distribution, but with a density nearly nodeless and with a slow
decaying toward zero density at large r values.

In the left panels of Figure 7 we report the plots obtained by
adding Di(r) to D,,(r) of hydrogenic functions. These composed
distributions are taken as “reference distributions” for the
dissociation products H(1s) + H(n/). In Figure 7 (right panels)
we report the “state”(1s,nl) obtained from computations with
the STO basis set at the internuclear distance of 10000 bohr,
i.e. at dissociation. Each plot of the radial distribution
functions relates to two orbitals: the 1s orbital generates a
peak at very short distance, and the n/ orbital, with n = 2 to
5 and [ = 0 to 3, yields the distribution located at variable
distances.

In the figure we compare the number of nodes and the
positions of the corresponding maxima (not the intensities) of
the D,(r) at infinite separation, with those computed at the
internuclear distance R = 10000 bohr; for example, the
distribution 6(1s3d) in the left top panel has its counterpart in
the distribution 3(1s3d) in the right top panel. From this
comparison, keeping in mind that one hydrogen orbital is always
of 1s type, one can identify the distribution for the other orbital,
namely the orbitals 2p, 2s, 3d, 3p, 3s, 4d, 4f, 4s, 4p, ionic,
designated (1s’1s"), 5d, 5s, 5p and 5f, characterizing the states
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1B to 14B, respectively. This comparison relates to the
computed dissociation products. Note that the hydrogenic
distributions D,,(r) are generated orderly, i.e. state 2 corresponds
ton=2and [ =0, state 3ton = 2 and [ = 1, etc., Further,
state 1, n = 1 and [ = 0, is omitted since no 'S; state
dissociates as H(1s) + H(1s). For the computed distributions
on the left panels, the sequence of the integers 1, 2, 3, ...
represents the order of the roots obtained from the diago-
nalization of the secular equation, thus the state order is
assigned unambiguously.

In Figure 8 we report the radial distribution functions for
states 1B to 9B at the internuclear distances of 0.5 bohr (i.e.,
approaching the helium united atom) and 2.0 bohr, the distance
near the first minimum for most states (see Table 1). The
symmetry of the system imposes that at the united atom the
state configurations are restricted to (1snp) and (1snf). In Fig-
ure 8§ the radial distribution functions at 0.5 bohr respect this
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symmetry constraint. However, at the united atom, the states
(1snp) and (1snf) are known to be nearly degenerate'® with the
energies of the states (1snf) slightly lower than those of the
states (1snp). Computationally, we correctly obtain the two states
very close in energy, but our hydrogen basis set yields the energy
of the states (1snp) slightly lower than that of the states (1snf).
Therefore, approaching the united atom state crossings, not
detected by our computations, are expected between the pairs
of states 3 and 4, 5 and 6, 7 and 9.

From the right panels of Figure 8, at the internuclear distance
of 2.0 bohr, we see a variety of state configurations. The
configuration of 1B is a mixture of the ionic (1s’1s”) with the
(1s2p) configurations, then the configurations (1snp) at 0.5 bohr
switch to (1snd) at 2.0 bohr.

We have computed the radial distribution functions for each
state at 19 internuclear separations, starting at R = 0.5 bohr
and ending at 100 bohr; the density at dissociation is analyzed
twice, at R = 1000 and 10000 bohr, as for the 'X; states,’ the
two computations yield the same results.

The 1B state from dissociation to about 15 bohr has the
electronic configuration (1s2p), which becomes ionic (1s’ls”)
until 2.2 bohr, and at 2.0 it becomes a mixture of (1s’1s”) and
(1s2p) until it merges into the united atom configuration
He(1s2p). The relative importance of ionic and covalent
components for this state has been discussed by Kolos® and
Mulliken.'* The electronic configurations at the united atom, at
dissociation and at intermediate internuclear distances are in
agreement with those proposed by Mulliken.!*

The 2B state configuration from dissociation to about 5.0 bohr
is (1s2s); from 2.5 bohr to 2.0 becomes (1s3d), then (1s3p) until
it merges into He(1s3p). Again, this is in agreement with
Mulliken. '

The state 3B configuration from dissociation to ~100 bohr
is (1s3d), and then it becomes the ionic configuration (1s’1s”)
until 5.7 bohr where there is a mixture of the ionic and (1s2s)
configurations. From 5.4 to 5.0 bohr it is (1s3p); from 2.5 to
2.0 bohr it becomes (1s4d) and from 1.0 to 0.5 bohr (1s4p)
merging into the united atom He(1s4f).

The state 4B configuration from dissociation to 6.2 bohr is
(1s3p). From 5.7 to 5.4 bohr it is a mixture of ionic and (1s3/)
likely (1s3s); this is the region of an avoided state crossing with
the 3B state. As shown in the bottom panel of Figure 4 the
ionic state 3 of H"H™ overlaps with state 4B between 5.4 and
6 bohr. At 5.0 bohr the 4B configuration is (1s3d) and from 2.5
to the united atom it becomes (1s4/) first 4d, until 2.0 bohr,
then 4f in approaching the united atom, rather then (1s4p).

The state 5B configuration from dissociation to 6.2 bohr is
(1s3s), from 5.7 to 5.0 bohr is (1s4d); then from 2.5 to 0.5 bohr
it becomes (1s5/) first (1s5d) until 1.0 bohr, then (1s5p) rather
than (1s5f), the united atom.

The state 6B configuration at infinity is (1s4d), but it becomes
ionic from 100 to15 bohr; from 15 to 5.0 bohr is (1s3/) mainly
(1s3s), and from 2.5 to the united atom it is (1s5f) rather than
(1s5p), the united atom configuration.

The state 7B configuration at dissociation is (1s4f), but it
becomes (1s4d) at 100 bohr, and (1s4f) from 34 bohr to 10
bohr, then (1s4p) from 6.2 to 5.7 bohr and (1s5f) at 5 bohr.
From 2.5 bohr to the united atom the configuration is (1s6),
specifically (1s6d) until 2.0 and then (1s6p); the united atom is
He(1s6f).

The state 8B configuration at dissociation is (1s4s); from 20
to 15 it is (1s4d), at 10 bohr it is (1s4s); from 6.2 to 5.4 bohr
itis (1s5f), from 2.5 to the united atom it becomes (1s6/) mainly
(1s6f); the united atom is He(1s6p).
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internuclear distance R = 10000 bohr.

The state 9B configuration from dissociation to 10 bohr is (1s4p);
from 6.2 to 5.0 bohr it is (1s5/) first (1s5f), then (1s5p) and finally
(1s5s); from 2.5 bohr to the united atom it becomes (1s7/) first
(1s7d) until 2.0 bohr then (1s7p); the united atom is He(1s7f).

State 10B dissociates as H"H™. From 100 to 10 bohr the
configuration is (1s4l), starting with (1s4s). At 6.2 bohr it
becomes (1s5p); from 5.7 to 5.0 bohr it is (1s6/); from 2.5 to

2.0 bohr it is (1s8p) and then switches to (1s7f) until the united
atom, which is He(1s7p).

States 11B, 12B, 13B and 14B dissociate as (1s5d), (1s5s),
(1s5p) and (1s5f), respectively; the corresponding states at the
united atom are He(1s8f), He(1s8p), He(1s9f), and He(1s9p).
The radial densities for these states are characterized by many
nodes, therefore not easily classifiable.
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5. Basis Subset Decompositions

The identification of the electronic configurations obtained
in the previous section is confirmed by decomposing the STO
basis set into subsets with the same / value (for example all the
ns STO, or all the np STO, etc.) These subsets bring specific
and characteristic contributions to the total energy of the 1B to
nB states and thus to the corresponding electronic density. The
results of this analysis are summarized in Figures 9 and 10.

The top left panel of Figure 9 reports computations of the B
states using only ns STO (dashed curves) to be compared with
thin lines (full curves) representing the final computations
previously reported in Figure 2. With the ns subset only the 1B
and the 2B state are crudely reproduced, indicating a strong ns
contribution for these states. The curve la and, starting from
~3 bohr until dissociation, the 2a are formed by the 2s functions.
The 3s functions generate the first minimum of curve 2a and,
starting from 3 bohr until dissociation the two curves 3a and
4a which cross in the region 6—7 bohr. The state crossing at

~5.3 bohr between curves 5a and 6a is generated by the 4s
functions. The first cross, between 3a and 4a, is retained in the
final PECs, and the second one resolves into a pronounced bump
for state 5B. At this level, the dashed PECs for the 3B, 4B and
5B states are clearly incorrectly reproduced, indicating the need
of STO of higher [ values.

Indeed, proceeding to the top right panel, one can see that
the combined ns and 2p STO subsets are capable of reproducing,
although with different accuracy, the states 1B, 2B, 3B, 4B and,
only approximately, 5B. The avoided state crossings between
curves 3a and 4a and between 5a and 6a are now more evident.
Further, from the figure we learn that most of the 2p effect is
due to 2p, functions (thick full lines) with limited contribution
from the 2p, (dashed lines), important only for the la and 3a
curves. Addition of the full np subset improves the accuracy
which is now acceptable for the states 1B, 2B and 3B.

Addition of the nd STO subset notably improves the energy
for all the states dissociating up to 1s + 4/. For the higher states
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Figure 10. PECs for states 1 to 8 obtained from ns STO subsets to full STO basis set.

the representation is poor. These graphs are overcrowded, thus
not easily readable, but provide a synthetic and overall summary
on the effect of the different subsets of STO, and confirm the
density analysis conclusions.

The graphs reported in the panels of Figure 10 confirm clearly
and in detail the conclusions above obtained for the states 1B
to 8B. From this figure we note that for the 1B, 2B and 3B
states large energy improvements are mainly due to 2p, STO.
For the state 4B the 3p, is dominant among the np, STO; for
states 5B to 8B the STO 3p,. 4p,, and 5p, become dominant.
The need of inclusion of the nd STO becomes apparent starting
from state 5B until state 8B. The need of nf STO is clearly
noted for state 8B.

This state by state energy decomposition analysis confirms
the previous deductions on the main contribution by specific n/
orbitals for the 'S states.

6. Conclusions

The 'S state computations reported in this work are
performed with extended and optimized STO and GTO basis
sets. The energies of the 1B to 6B states are in nice agreement
with the accurate computations by Wolniewicz et al.’ and
slightly better than those reported in ref 7.

The evolution of the electronic density is analyzed in detail
state by state with the comparative probability density analysis,
and by a study of the relative importance of basis subsets. The
computations for states 6B to 9B complete for the first time the
manifold of states dissociating as H(1s) + H(4/). For the state
manifold dissociating into H(ls) + H(5/) the computations
reported are less reliable, due to limitations in the basis sets for
high n and / values; however, we find that these states dissociate
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correctly and all, but B10, have minima lying just above the
lo, state of the Hy" system.

The ionic character of the 'S states is quantitatively
determined. For states dissociating as (1sn/) a rule has been
noted: for each n > 1 value there is one state which strongly
interacts with the H"H™ system leading to minima with ionic
character at larger and larger internuclear separations the higher
the value of n. This rule, previously found for the '=; state, is
here extended to the ', states. In both cases, the first state of
the (1s5/) manifold dissociates as HTH™.
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